{ 4, 2, 4 } ->
{ 6, 2, 4, 3, 3, 2, 4, 2, 3, 2, 3, 3, 4, 4, 3, 3, 4 } ->
The second white polygon is made from the following points :
\begin{array}{cc} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & -1 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} \left(1+\sqrt{3}\right) & \frac{1}{2} \left(1+\sqrt{3}\right) \\ \frac{1}{2} \left(1+\sqrt{3}\right) & \frac{1}{2} \left(3+\sqrt{3}\right) \\ \frac{\sqrt{3}}{2} & \frac{3}{2}+\sqrt{3} \\ 0 & 1+\sqrt{3} \\ -\frac{\sqrt{3}}{2} & \frac{3}{2}+\sqrt{3} \\ \frac{1}{2} \left(-1-\sqrt{3}\right) & \frac{1}{2} \left(3+\sqrt{3}\right) \\ \frac{1}{2} \left(-1-\sqrt{3}\right) & \frac{1}{2} \left(1+\sqrt{3}\right) \\ \end{array}
Ready to enter the next level of the problem. ;-)
No comments:
Post a Comment