Not counting Numb3rs there aren't many movies truly about math. As far as I know anyway. I know of the following movies ( in alphabetical order ):
 A Beautiful Mind
 Flatland
 PI
 Proof.
All these movies are fairly recent. The oldest is PI, from 1998. So that's encouraging. There is a movie about Ramanujan / Hardy in the works. Looking forward to that one.
Sunday, June 22, 2008
Saturday, June 21, 2008
Programming Mathematica: Finding Perfect Numbers
Find all numbers less than or equal to 10000 which are equal to the sum of their proper positive divisors. These are the so called Perfect Numbers. For example 6 has proper positive divisors 1,2 and 3 ( 1+2+3=6 ).
Finding a solution to this problem can be done with the following Mathematica program.
See also: An Introduction to Programming with Mathematica
Finding a solution to this problem can be done with the following Mathematica program.
PerfectQ [n_]:=Apply[Plus,Divisors[n]]== 2n
PerfectSearch[n_]:=Select[Range [n],PerfectQ]
PerfectSearch[10000]
{6,28,496,8128}
See also: An Introduction to Programming with Mathematica
Tuesday, June 17, 2008
Third Isomorphism Theorem: Visual Example
Let G, H and K be groups such that K is a normal subgroup of H and H is a normal subgroup of G. Then ( G/K ) / ( H/K ) = G / H. This is the Third Isomorphism Theorem or the Chain Theorem.
For example in
D4 (1)
D4 / { e, a2 } = C2 X C2 (2)
{ e, a2, a, a3 } / { a, a2 } = C2 (3)
( D4 / { e, a2 } ) / ( { e, a2, a, a3 } / { a, a2 } ) = C2 X C2 / C2 = C2 (4)
but also:
D4 / { e, a2, a, a3 } = C2 (5)
(1)
(2)
(3)
(4)
(5)
For example in
D4 (1)
D4 / { e, a2 } = C2 X C2 (2)
{ e, a2, a, a3 } / { a, a2 } = C2 (3)
( D4 / { e, a2 } ) / ( { e, a2, a, a3 } / { a, a2 } ) = C2 X C2 / C2 = C2 (4)
but also:
D4 / { e, a2, a, a3 } = C2 (5)
(1)
(2)
(3)
(4)
(5)
Wolfram Workbench
I almost gave up on finding a copy of Wolfram Workbench. If you are serious about coding in Mathematica it's a must have.
Perfect for scientists, engineers, mathematicians, financial analysts, and educators who want to build applications for technical computing problems, Wolfram Workbench is an integrated development environment (IDE) for Wolfram products such as Mathematica, gridMathematica, and webMathematica.
Mathematica provides a highlevel environment that uses a flexible programming language to integrate highperformance computing, a vast collection of algorithms, and tools for visualization, data processing, and document preparation. Programmers who want to develop code written in the Mathematica language can use Workbench to:
* Work with code in a specialized editor
* Debug programs at the source level
* Profile the code's execution
* Develop and run tests
* Work with Wolfram technologies
* Build and deploy Mathematica packages
* Code better in an integrated workgroup environment
Saturday, June 14, 2008
Open University UK
I was at a presentation about studying ( mathematics ) at the Open University in the UK. The presentation was held in The Hague, Lange Houtstraat 11. I arrived early which gave me the opportunity to talk to a course consultant prior to the presentation. She answered most of the questions I had. The presentation took about 45 minutes and was very informative. Some interesting facts are:
 200,000 students worldwide;
 +/ 560 students in NL;
 mathematics is a popular study among Dutch students ;
 most students are in the age group 3140;
 credits earned don't expire;
 there are no entrylevel requirements;
 earning 60 points a year may cost upto 2000 punds a year ( if not more ).
Anyway, I decided that I will register as a student and take my first course in September.
 200,000 students worldwide;
 +/ 560 students in NL;
 mathematics is a popular study among Dutch students ;
 most students are in the age group 3140;
 credits earned don't expire;
 there are no entrylevel requirements;
 earning 60 points a year may cost upto 2000 punds a year ( if not more ).
Anyway, I decided that I will register as a student and take my first course in September.
Sunday, June 8, 2008
Group Theory Applets
I have found several Java Applets that can aid in learning ( teaching ) some concepts in Group Theory. Find them on ShOp Java Applets.
Examples:
Powers of permutations
Orbits and stabilizers
Fixed sets for orbit counting
Permutations: the symmetric group S4
Cosets, Lagrange and factor groups
(c) Sheffield University Open University Java Applets
Examples:
(c) Sheffield University Open University Java Applets
Monday, June 2, 2008
Algebraic Graph Theory
I am interested in graphical representations of finite groups. Today I discovered that...
"For every finitely generated group G there exists a graph X such that the automorphism group of X, Aut(X) is isomorphic to G."
An interesting theorem. Well, I thought so anyway. Just had to be. All based on my intuition.
The branch of mathematics which studies this area is called Algebraic Graph Theory.
"For every finitely generated group G there exists a graph X such that the automorphism group of X, Aut(X) is isomorphic to G."
An interesting theorem. Well, I thought so anyway. Just had to be. All based on my intuition.
The branch of mathematics which studies this area is called Algebraic Graph Theory.
Subscribe to:
Posts (Atom)
Popular Posts

Among lectures on Calculus I,II and III, ( Introduction to ) Linear Algebra and ( Introduction to ) Differential Equations from the UCCS ( ...

Problem: We want to calculate the sum of the elements of a list of numbers. Suppose this list is named l and has been assigned the value {1,...

Today I started to read the Ramanujan biography ( The ebook version, of course. ) The book looks promising. What was it like to communicate...

I found a set of video lectures on Abstract Algebra. MATH E222 Abstract Algebra  http://www.extension.harvard.edu/openlearning/math222/ E...

Ramanujan's genius (r) was discovered by Hardy (l) At a very young age Ramanujan designed the following formula for a 3 by 3 magic sq...
Welcome to The Bridge
Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before
(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)