#### Affine transformation as in M336

An affine transformation is a transformation of the form $$\mathbf{x} \rightarrow A\mathbf{x} + \mathbf{p},$$ where $A$ is an invertible linear transformation and $\mathbf{p}$ some constant vector.Why not:

An affine transformation is of the form $$\mathbf{x} \rightarrow A\mathbf{x} + \mathbf{p},$$ where $A$ is an invertible matrix and $\mathbf{p}$ a vector.

Details matter in mathematics.

Not important, to the point: for calculation purposes the notation $f=t\left[ \mathbf{p} \right] \circ \lambda\left[ \mathbf{A} \right] $ is used which requires five additional rules to remember:

R1 $t\left[ \mathbf{p} \right] \circ t\left[ \mathbf{q} \right] = t\left[ \mathbf{p+q} \right]$

R2 $\lambda \left[ A \right] \circ \lambda \left[ B \right] = \lambda \left[ AB \right]$

R3 $\lambda \left[ A \right] \circ t\left[ \mathbf{p} \right] = t\left[ A \mathbf{p} \right] \circ \lambda \left[ A \right]$

R4 $( t\left[ \mathbf{p} \right] \circ \lambda \left[ A \right] ) \circ ( t\left[ \mathbf{q} \right] \circ \lambda \left[ B \right] ) = t\left[ \mathbf{p}+A\mathbf{q} \right] \circ \lambda \left[ AB \right]$

R5 $(t\left[ \mathbf{p} \right] \circ \lambda \left[ A \right])^{-1} = t\left[ -A^{-1}\mathbf{p} \right] \circ \lambda \left[ A^{-1} \right]$

What an

**ugly**and never seen before notation. Br! This hurts my eyes.

#### Alternative

For calculation purposes we define the block matrix$$R = \left( \begin{array}{cc}

A & \mathbf{t} \\

0 & 1 \end{array} \right) $$

Example: if $A=I$ and $\mathbf{t}=(t_1,t_2)^T$ and $\mathbf{x}=(x,y)^T$, then

$ R\mathbf{x} = \left( \begin{array}{ccc}

1 & 0 & t_1 \\

0 & 1 & t_2 \\

0 & 0 & 1 \end{array} \right) \cdot \left( \begin{array}{c}

x \\

y \\

1 \end{array} \right)= \left( \begin{array}{c}

x+t_1 \\

y+t_2 \\

1 \end{array} \right)$

No rules to remember, only elementary matrix algebra. We have used the fact that a translation in $R^n$ is basically a rotation in $R^{n+1}$. So, the same idea works for affine transformations in $R^3$ which can be modeled by a rotation-matrix in $R^4$.

I want to discuss one more definition regarding this as an affine transformation is any transformation that preserves col-linearity and ratios of distances. In this sense, affine indicates a special class of projective transformations that do not move any objects from the affine space to the plane at infinity or conversely. An affine transformation is also called an affinity.

ReplyDelete