The following topics are discussed in this lecture:
Isomorphism Theorem
Vector spaces over an arbitrary field
- Definition field
- Examples of finite fields
Proof that Z/pZ is a field
- Added to what we know from Z/nZ as an additive subgroup of Z we must prove that each a in Z/pZ has a multiplicative inverse, so we must show that if a is not a multiple of p then there is an integer b such that a*b congruent 1 mod p.
( Actual proof is worked out in the video )
What are the finite fields beyond Z/pZ ?
- the finite fields are of order p^n where p is a prime and n>=1, so there are finite fields of order 2, 3, 4, 5, 7, 8, 9, 11, etc. ( note 6 = 2*3, 10=2*5 not of type p^n )
Definition of a vector space ( V )
- Additive abelian group
- With a map f: VxF -> V which is called the scalar multiplication
- ( All rules are written down on board. )
Examples of vector spaces
- V={0}
- V=F
- V=F2
- V=Fn
- V=F[X], vector space of all polynomials p(x) with coefficients in F
Vector subspace
- A subgroup 'stable' under scalar multiplication
Vector space homomorphisms
- Linear transformations ( as we knew it ) are explained as group homomorphisms stable under scalar multiplication
- So for T: V-> W we can define the Kernel of T as a subspace of V and the image of T as a subspace of W. We can also define the quotient space V/W analog to the quotient group
Notes on Blackbody radiation
2 years ago
No comments:
Post a Comment