Let $n \in \mathbb{N}$, show that $$f(n) = \frac{(2+\sqrt{3})^{1+2n}+(2-\sqrt{3})^{1+2n}+2}{6}$$ is a square.
Hint: MST121 / MS221 math suffices to solve this one, we need to find a function $A(n)$ such that $${A(n)}^2 = \frac{(2+\sqrt{3})^{1+2n}+(2-\sqrt{3})^{1+2n}+2}{6}$$
and
$$f(n) = A(n) \in \mathbb{N}$$
( To be continued. )
2-2024 Quran and mathematics
7 months ago
No comments:
Post a Comment