Summary.
- Sylow Theorems
- Groups of order p*q
- Groups of order p^2 * q
- S5
Topic of the lecture: A5.
- Prove the following proposition: " If G is a simple group of order 60 then G is isomorphic to A5."

And more A5 stuff.
As of May 4 2007 the scripts will autodetect your timezone settings. Nothing here has to be changed, but there are a few things
Open University pure maths study and research blog
The stereotype mathematician in jokes is a male writing some incomprehensible formula on a blackboard and not being able to communicate the meaning of it to his audience. There are however jokes where the mathematician is viewed more favourable. I found two of them on the site from Simon Singh. ( Simon Singh is an English author, journalist and TV producer, specialising in science and mathematics. He wrote a book on Fermat's Last Theorem. As I mentioned Singh collects jokes, you'll find his jokes on his website. )
An assemblage of the most gifted minds in the world were all posed the following question:"What is 2 + 2 ?"
The engineer whips out his calculator, taps away at it for a while and finally announces "3.99".
The physicist consults his technical references, sets up the problem on his computer, and announces "it lies between 3.98 and 4.02".
The mathematician cogitates for a while, oblivious to the rest of the world, then announces: "I don't know what the answer is, but I can prove an answer exists!".
The philosopher strokes his chin for several days, finally asking: "But what do you mean by 2 + 2?"
Finally the accountant closes all the doors and windows, looks around carefully then asks "What do you want the answer to be?"
( By Helen Arney )
An astronomer, a physicist and a mathematician were holidaying in Scotland. Glancing from a train window, they observed a black sheep in the middle of a field.
"How interesting," observed the astronomer, "all Scottish sheep are black!"
To which the physicist responded, "No, no! Some Scottish sheep are black!"
The mathematician gazed heavenward in supplication, and then intoned, "In Scotland there exists at least one field, containing at least one sheep, at least one side of which is black."
( By Stephen Oman )
The course is divided into three related areas: graphs, networks and design. The Introduction introduces two themes of the course, combinatorics and mathematical modelling, and illustrates them with examples from the three areas.
Graphs 1: Graphs and digraphs discusses graphs and digraphs in general, and describes the use of graph theory in genetics, ecology and music, and of digraphs in the social sciences. We discuss Eulerian and Hamiltonian graphs and related problems; one of these is the well-known Königsberg bridges problem.
Networks 1: Network flows is concerned with the problem of finding the maximum amount of a commodity (gas, water, passengers) that can pass between two points of a network in a given time. We give an algorithm for solving this problem, and discuss important variations that frequently arise in practice.
Design 1: Geometric design, concerned with geometric configurations, discusses two-dimensional patterns such as tiling patterns, and the construction and properties of regular and semi-regular tilings, and of polyominoes and polyhedra.
Graphs 2: Trees Trees are graphs occurring in areas such as branching processes, decision procedures and the representation of molecules. After discussing their mathematical properties we look at their applications, such as the minimum connector problem and the travelling salesman problem.
Networks 2: Optimal paths How does an engineering manager plan a complex project encompassing many activities? This application of graph theory is called ‘critical path planning’. It is one of the class of problems in which the shortest or longest paths in a graph or digraph must be found.
Design 2: Kinematic design The mechanical design of table lamps, robot manipulators, car suspension systems, space-frame structures and other artefacts depends on the interconnection of systems of rigid bodies. This unit discusses the contribution of combinatorial ideas to this area of engineering design.
Graphs 3: Planarity and colouring When can a graph be drawn in the plane without crossings? Is it possible to colour the countries of any map with just four colours so that neighbouring countries have different colours? These are two of several apparently unrelated problems considered in this unit.
Networks 3: Assignment and transportation If there are ten applicants for ten jobs and each is suitable for only a few jobs, is it possible to fill all the jobs? If a manufacturer supplies several warehouses with a product made in several factories, how can the warehouses be supplied at the least cost? These problems of the system-management type are answered in this unit.
Design 3: Design of codes Redundant information in a communication system can be used to overcome problems of imperfect reception. This section discusses the properties of certain codes that arise in practice, in particular cyclic codes and Hamming codes, and some codes used in space probes.
Graphs 4: Graphs and computing describes some important uses of graphs in computer science, such as depth-first and breadth-first search, quad trees, and the knapsack and travelling salesman problems.
Networks 4: Physical networks Graph theory provides a unifying method for studying the current through an electrical network or water flow through pipes. This unit describes the graphical representation of such networks.
Design 4: Block designs If an agricultural research station wants to test different varieties of a crop, how can a field be designed to minimise bias due to variations in the soil? The answer lies in block designs. This unit explains the concepts of balanced and resolvable designs and gives methods for constructing block designs.
Conclusion In this unit, many of the ideas and problems encountered in the course are reviewed, showing how they can be generalised and extended, and the progress made in finding solutions is discussed.
Introduction Real Functions and Graphs is a reminder of the principles underlying the sketching of graphs of functions and other curves. Mathematical Language covers the writing of pure mathematics and some of the methods used to construct proofs. Number Systems looks at the systems of numbers most widely used in mathematics: the integers, rational numbers, real numbers, complex numbers and modular or ‘clock’ arithmetics.
Group Theory (A) Symmetry studies the symmetries of plane figures and solids, including the five ‘Platonic solids’, and leads to the definition of a group. Groups and Subgroups introduces the idea of a cyclic group, using a geometric viewpoint, as well as isomorphisms between groups. Permutations introduces permutations, the cycle decomposition of permutations, odd and even permutations, and the notion of conjugacy. Cosets and Lagrange’s Theorem is about ‘blocking’ a group table, and leads to the notions of normal subgroup and quotient group.
Linear Algebra Vectors and Conics is an introduction to vectors and to the properties of conic sections. Linear Equations and Matrices explains why simultaneous equations may have different numbers of solutions, and also explains the use of matrices. Vector Spaces generalises the plane and three-dimensional space, providing a common structure for studying seemingly different problems. Linear Transformations is about mappings between vector spaces that preserve many geometric and algebraic properties. Eigenvectors leads to the diagonal representation of a linear transformation, and applications to conics and quadric surfaces.
Analysis (A) Numbers deals with real numbers as decimals, rational and irrational numbers, and goes on to show how to manipulate inequalities between real numbers. Sequences explains the ‘null sequence’ approach, used to make rigorous the idea of convergence of sequences, leading to the definitions of pi and e. Series covers the convergence of series of real numbers and the use of series to define the exponential function. Continuity describes the sequential definition of continuity, some key properties of continuous functions, and their applications.
Group Theory (B) Conjugacy looks at conjugate elements and conjugate subgroups, and returns to the idea of normal subgroups in this context. Homomorphisms is a generalisation of isomorphisms, which leads to a greater understanding of normal subgroups. Group Actions is a way of relating groups to geometry, which can be used to count the number of different ways a symmetric object can be coloured.
Analysis (B) Limits introduces the epsilon-delta approach to limits and continuity, and relates these to the sequential approach to limits of functions. Differentiation studies differentiable functions and gives l’Hôpital’s rule for evaluating limits. Integration explains the fundamental theorem of calculus, the Maclaurin integral test and Stirling’s formula. Power Series is about finding power series representations of functions, their properties and applications.
Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before
(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)