Completed 3 out of 5 questions of M208  TMA02 today. TMA02 is entirely on Group Theory.
The first question lists three algebraic structures which are possibly groups. Using the group axioms you have to determine if the structures are a group.
The second question is about a 2D object for which all geometric symmetries must be determined. The symmetries have to be written down in 2 line permutation notation. From these a Cayley Table for the group must be set up. Finally you have to determine with which well known group our group is isomorphic.
The third question is about cyclic groups, isomorphisms between them and subgroups of them.
Q4 and Q5 TBD at a later date / time. ( M208 is thus still on schedule. )
I often 'read ahead' in various mathematics books., those who are subscribed to my blog know that combinatorics, algebra and number theory are my favourite subjects ( not necessarily in that particular order ). Anyway, the subject that is 'holding me back' most and which I merely see as a 'supporting' subject is complex analysis. Sofar it occurred in Lie Theory and Analytic Number Theory. Subjects that ( I hope ) temporarily closed their doors on me. It's time to handle this issue. I found a series of 24 Mathematica Notebooks on 'Complex Analysis with Mathematica. Learning more practical applicationa of Mathematica and Complex Anallysis sounds great.  Because they are so obvious I forgot to mention fractals where complex functions play a major role.
Subscribe to:
Post Comments (Atom)
Popular Posts

Among lectures on Calculus I,II and III, ( Introduction to ) Linear Algebra and ( Introduction to ) Differential Equations from the UCCS ( ...

Today I started to read the Ramanujan biography ( The ebook version, of course. ) The book looks promising. What was it like to communicate...

Problem: We want to calculate the sum of the elements of a list of numbers. Suppose this list is named l and has been assigned the value {1,...

I found a set of video lectures on Abstract Algebra. MATH E222 Abstract Algebra  http://www.extension.harvard.edu/openlearning/math222/ E...

Ramanujan's genius (r) was discovered by Hardy (l) At a very young age Ramanujan designed the following formula for a 3 by 3 magic sq...
Welcome to The Bridge
Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before
(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)
No comments:
Post a Comment