Direct and indirect substitution originates from Calculus Integration, I suppose. Take for example, the integral:
\int{x \sin(x^2)\ dx}
requires the direct substitutions y=x^2, dy=2x \ dx to solve. However, the integral
\int{\frac{1}{\sqrt{1-x^2}}\ dx}
requires the indirect substitution x=sin(u), dx=cos(u) \ du to solve.
A Bernoulli equation is a DE of type:
y' = p(x) \cdot y + q(x) \cdot y^{n}
Rearrange as follows:
\frac{y'}{y^{n}} = p(x) \cdot \frac{y}{y^{n}} + q(x) \cdot \frac{y^{n}}{y^{n}}
\frac{y'}{y^{n}} = p(x) \cdot \frac{1}{y^{n-1}} + q(x)
Now substitute v=\frac{1}{y^{n-1}}, and thus v' = (1-n) \frac{y'}{y^{n}}:
\frac{v'}{1-n} = p(x) \cdot v + q(x)
v' + (n-1)p(x) \cdot v = (1-n)q(x)
The last equation is a linear ODE in standard form.
No comments:
Post a Comment