The probability of getting k heads when flipping n coins is:
\sum_{k=0}^{n} {n \choose k} = 2^n
P(E) = {n \choose k} p^k (1-p)^{ n-k}
An Identity of Ramanujan
\frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }
( ... more later !!! )
No comments:
Post a Comment