The probability of getting \(k\) heads when flipping \(n\) coins is:
\[\sum_{k=0}^{n} {n \choose k} = 2^n \]
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
An Identity of Ramanujan
\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
( ... more later !!! )
No comments:
Post a Comment