As of May 4 2007 the scripts will autodetect your timezone settings. Nothing here has to be changed, but there are a few things

Please follow this blog

Search this blog

Monday, February 28, 2011

Four squares theorem and Mathematica

How can we represent, say, 123456 as a sum of four squares? Can it be done in more than one way, perhaps?

Yes, it can be done in exactly 181 ways. Three examples are:
$123456 = 0^2+8^2+176^2+304^2$
$123456 =28^2+172^2+172^2+252^2$
$123456 =4^2+12^2+236^2+260^2$

Representations like this can be calculated with Mathematica, use the PowersRepresentations function.

Calculations like this are expensive, i.e. can take a long time. Could be interesting to have study the algorithm.

Sofar, I read the proof of Lagrange's four-square theorem in three books. ( As a preparation for the general proof of the polygonal number theorem by Cauchy. ) Although they all (i.e. Nathanson, Burton and Davenport, ) use the same proof the clarity differs greatly among these authors. At a certain level too much verbosity doesn't add to the clarity anymore but nothing is worse than too much density. Only Davenport used an example to illustrate the proof, thanks to his text I am beginning to understand the proof.

No comments:

Post a Comment

Popular Posts

Welcome to The Bridge

Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before




(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)