As of May 4 2007 the scripts will autodetect your timezone settings. Nothing here has to be changed, but there are a few things

## Sunday, November 7, 2010

### Case: solving linear ODE with trig RHS

In this case we solve the differential equation $y' + 3y = \sin{x} + \cos{x}$. Note the extensive usage of complex numbers.

\begin{aligned} y' + 3y &= \sin{x} + \cos{x}\\ e^{3x} \cdot y' + 3 e^{3x} \cdot y &= e^{3x}(\sin{x} + \cos{x}) \\ (e^{3x} \cdot y)' &= e^{3x}(\sin{x} + \cos{x})\\ (e^{3x} \cdot y)' &= e^{3x}\sqrt{2}\cos{(x-\frac{\pi}{4})}\\ (e^{3x} \cdot y)' &= \Re{\left\{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x}\right\}}\\ \int{(e^{3x} \cdot y)' \ dx} &= \Re{\left\{ \int{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x} \ dx}\right\}}\\ \int{(e^{3x} \cdot y)' \ dx} &= \Re{\left\{ \int{ \sqrt{2} e^{(3+i)x-\frac{\pi}{4}i} \ dx}\right\}}\\ e^{3x} \cdot y &= \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(3+i)x-\frac{\pi}{4}i} \right\}} + C\\ y &= \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(x-\frac{\pi}{4})i} \right\}} + Ce^{-3x}\\ y &= \frac{1}{5}\cos{x} + \frac{2}{5}\sin{x} + Ce^{-3x} \end{aligned}

Step 1:
$y' + 3y = \sin{x} + \cos{x} \Leftrightarrow$
$e^{3x} \cdot y' + 3 e^{3x} \cdot y = e^{3x}(\sin{x} + \cos{x})$
We want to multiply the LHS and RHS with a factor $p(x)$ such that $p(x) \cdot y + 3 p(x) \cdot y' = (y\cdot p(x))'$. This implies that $p'(x) = 3p(x) \Leftrightarrow p(x) = \int{3p(x) \ dx} \Leftrightarrow p(x) = e^{3x} + C$. For our purpose $C=0$ suffices.

Step 2:
$e^{3x} \cdot y' + 3 e^{3x} \cdot y = e^{3x}(\sin{x} + \cos{x}) \Leftrightarrow$
$(e^{3x} \cdot y)' = e^{3x}(\sin{x} + \cos{x})$
We implement our objective from the previous step. This step is allowed due to the product rule of differentiation: $(f\cdot g)'(x) = f(x)g'(x) + g(x)f'(x)$.

Step 3:
$(e^{3x} \cdot y)' = e^{3x}(\sin{x} + \cos{x}) \Leftrightarrow$
$(e^{3x} \cdot y)' = e^{3x}\sqrt{2}\cos{(x-\frac{\pi}{4})}$
We want the RHS to be a single trigonometric function:

\begin{aligned} \cos{x}+\sin{x} &= \Re{(e^{ix})} + \Re{(-ie^{ix})}\\ &=\Re{(e^{ix}-ie^{ix})}\\ &=\Re{((1-i)e^{ix})}\\ &=\Re{(\sqrt{2}e^{-\frac{\pi}{4}i} \cdot e^{ix})}\\ &=\Re{(\sqrt{2}e^{(x-\frac{\pi}{4})i})}\\ &=\Re{(\sqrt{2}(\cos{(x-\frac{\pi}{4})}+i\sin{(x-\frac{\pi}{4})}))}\\ &=\sqrt{2}\cos{(x-\frac{\pi}{4})} \end{aligned}

Step 4:
$(e^{3x} \cdot y)' = e^{3x}\sqrt{2}\cos{(x-\frac{\pi}{4})} \Leftrightarrow$
$(e^{3x} \cdot y)' = \Re{\left\{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x}\right\}}$
If we write the RHS again as the real part of a complex expression we can integrate a single exponential function which is preferable due to its simplicity.

Step 5:
$(e^{3x} \cdot y)' = \Re{\left\{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x}\right\}} \Leftrightarrow$
$\int{(e^{3x} \cdot y)' \ dx} = \Re{\left\{ \int{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x} \ dx}\right\}}$
An intermediate step before integration, the RHS needs tyding up in the next step before integration over x.

Step 6:
$\int{(e^{3x} \cdot y)' \ dx} = \Re{\left\{ \int{ \sqrt{2} e^{(x-\frac{\pi}{4})i+3x} \ dx}\right\}} \Leftrightarrow$
$\int{(e^{3x} \cdot y)' \ dx} = \Re{\left\{ \int{ \sqrt{2} e^{(3+i)x-\frac{\pi}{4}i} \ dx}\right\}}$
In this step we have rewritten the RHS so that it is clear how the integration has to be done.

Step 7:
$\int{(e^{3x} \cdot y)' \ dx} = \Re{\left\{ \int{ \sqrt{2} e^{(3+i)x-\frac{\pi}{4}i} \ dx}\right\}} \Leftrightarrow$
$e^{3x} \cdot y = \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(3+i)x-\frac{\pi}{4}i} \right\}} + C$
In this step we have performed a straightforward integration of the LHS and RHS.

Step 8:
$e^{3x} \cdot y = \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(3+i)x-\frac{\pi}{4}i} \right\}} + C \Leftrightarrow$
$y = \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(x-\frac{\pi}{4})i} \right\}} + Ce^{-3x}$
We divide LHS and RHS by $e^{3x}$.

Step 9:
$y = \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(x-\frac{\pi}{4})i} \right\}} + Ce^{-3x} \Leftrightarrow$
$y = \frac{2}{5}\sin{x} + \frac{1}{5}\cos{x} + Ce^{-3x}$
We rearrange the RHS as follows:

\begin{aligned} y &= \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(x-\frac{\pi}{4})i} \right\}} + Ce^{-3x}\\ &= \Re{\left\{ \frac{\sqrt{2}}{3+i} e^{(x-\frac{\pi}{4})i} \right\}} + Ce^{-3x} \\ &= \Re{\left\{ \frac{1}{3+i} \frac{3-i}{3-i}(1-i)e^x \right\}} + Ce^{-3x} \\ &= \Re{\left\{ (\frac{1}{5}-\frac{2}{5}i)(\cos{x}+i\sin{x}) \right\}} + Ce^{-3x} \\ &= \Re{\left\{ \frac{1}{5}\cos{x} + \frac{2}{5}\sin{x} +i(-\frac{2}{5}\cos{x} + \frac{1}{5}\sin{x}) \right\}} + Ce^{-3x} \\ &= \frac{1}{5}\cos{x} + \frac{2}{5}\sin{x} + Ce^{-3x} \end{aligned}

This completes the explanation.

## Welcome to The Bridge

Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before

(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)