PROCEDURE:
- Calculate f_x, f_y, f_{xx}, f_{xy}, f_{yy}
- Calculate the critical points ;
Then for each critical point:
- Calculate A = f_{xx}(x_0, y_0)
- Calculate B = f_{xy}(x_0, y_0)
- Calculate C = f_{yy}(x_0, y_0)
- AC-B^2.
Apply the Second Derivative Test
If AC-B^2 > 0 and A > 0 minimum
If AC-B^2 > 0 and A < 0 maximum
If AC-B^2 < 0 saddle
If AC-B^2 = 0 degenerate
Click to enlarge
EXAMPLE:
( See Mathematica print )
f(x,y)=e^{x^2-\frac{x^4}{4}-y^2}
At (0,0): \left\{AC-B^2, A\right\} = \left\{-4,2\right\}
Saddle.
At (-\sqrt{2},0): \left\{AC-B^2, A\right\} = \left\{8e^2,-4e\right\}
Local maximum.
At (\sqrt{2},0): \left\{AC-B^2, A\right\} = \left\{8e^2,-4e\right\}
Local maximum.
.
No comments:
Post a Comment