As of May 4 2007 the scripts will autodetect your timezone settings. Nothing here has to be changed, but there are a few things

Please follow this blog

Search this blog

Saturday, November 27, 2010

Watched MIT 18.02 - lecture 11

In 18.02 lecture 11 Prof. Denis Aroux talks about differentials and the Chain Rule. Two of the examples used to illustrate the main topic are of particularly interesting: a new proof for the differentiation of products and quotients, and the conversion between rectangular and polar coordinates.

A main result of this lecture is $$df = f_u \frac{du}{dx} + f_v \frac{dv}{dx},$$ where $f$ is a function of two variables $u,v$ which are both dependent on $x$, and $f_u, f_v$ are partial derivatives. The quotient rule can be derived from this result as follows. Let $g(x) = \frac{u}{v}$, with $u,v$ both dependent on $x$ :

df &=f_u \frac{du}{dx}+f_v \frac{dv}{dx} \\
&=  \frac{1}{v}\frac{du}{dx}-\frac{u}{v^2}\frac{dv}{dx} \\
&= \frac{ v \frac{du}{dx}-u \frac{dv}{dx} }{v^2}
\end{align*} $
The last expression is the quotient rule for differentiation.

This lecture inspired me to some experimentation ( play ) with Mathematica's PolarPlot function. A polar coordinate is in fact a function of two variables $x,y$ which are both dependent on $r$ and $\theta$ with $x=r \cos(\theta)$, $y=r \sin(\theta)$. By applying the theory above one suddenly gets control over geometric objects like this:

Click to enlarge

Finally the concept of a gradient was mentioned which is merely a vector of partial derivatives. Gradients are the topic of lecture 12. I designed some problems and exercises ( and other experiments ) for functions in polar coordinates. I am delighted I feel more able in that regard.

No comments:

Post a Comment

Popular Posts

Welcome to The Bridge

Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before

(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)