Conjecture
Show that: if p is odd then2^{p-1}(2^p-1) = \sum_{k=1}^{\frac{p+1}{2}-1} (2k-1)^3
( Notice that 2^{p-1}(2^p-1) yields a perfect number if (2^p-1) is prime. )
Plan
The plan of the proof is as follows.- Find expressions for 1^3 + 2^3 + 3^3 + ... + k^3
- and 2^3 + 4^3 + 6^3 + ... + (2k)^3
- Subtract both expressions
- Create f(p) by injecting 2^p-1 into the upper-index
Proof
We use the Pascal Triangle to determine \sum_{k=1}^{n} k^3.\underline{n}
0: 1
1: 1 - 1
2: 1 - 2 - 1
3: 1 - 3 - 3 - 1
4: 1 - 4 - 6 - 4 - 1
5: 1 - 5 - 10-10 - 5 - 1
Since n^3={n \choose 1} + 6{n \choose 2} + 6{n \choose 3} we seek the second column, one row down or \sum_{k=1}^{n} k^3 = {n+1 \choose 2} + 6{n+1 \choose 3} + 6{n+1 \choose 3}.
Clearly, \sum_{k=1}^{n} 2k^3 = 8({n+1 \choose 2} + 6{n+1 \choose 3} + 6{n+1 \choose 4}).
If
f(n)=\sum_{k=1}^{n} k^3 = {n+1 \choose 2} + 6{n+1 \choose 3} + 6{n+1 \choose 4}
and
g(n)=8 \sum_{k=1}^{n} k^3 =8({n+1 \choose 2} + 6{n+1 \choose 3} + 6{n+1 \choose 4})
then the function we require is s(n) = f(n) - g( \lfloor \frac{n}{2} \rfloor ) \text{ for } n=1,3, \cdots
.
\begin{array}{ll} \underline{n} & \underline{s(n)}\\ 1 & 1 \\ 3 & 28 \\ 5 & 153 \\ 7 & 496 \\ 9 & 1225 \\ 11 & 2556 \\ 13 & 4753 \\ 15 & 8128 \end{array}
Since n=1,3, \cdots anyway, we can remove the difficult to handle floor function by \frac{n-1}{2} giving s(n) = f(n) - g(\frac{n-1}{2}) \text{ for } n=1,3, \cdots .
Finally we rework
s(p)=f(2^{\frac{p+1}{2}}-1) - g(\frac{(2^{\frac{p+1}{2}}-1)-1}{2})
to s(p)=2^{p-1} \left(2^p-1\right)
yielding for p=1 \cdots 7
\begin{array}{ll} \underline{p} & \underline{s(p)}\\ 1. & 1. \\ 2. & 6. \\ 3. & 28. \\ 4. & 120. \\ 5. & 496. \\ 6. & 2016. \\ 7. & 8128. \end{array}
( Since 2^3-1, 2^5-1 and 2^7-1 are prime 28 and 496, 8128 are perfect. )
No comments:
Post a Comment