Let $n$ be an odd positive integer.
Prove that there are $\tau(n)$ ways of writing $n$ as a sum of consecutive positive integers.
For example, if $n=9$, $\tau(9)=3$ because $9$ has three divisors $1,3,9$ and the three sums are: $9$, $4+5$ and $2+3+4$.
To be continued.
No comments:
Post a Comment