As of May 4 2007 the scripts will autodetect your timezone settings. Nothing here has to be changed, but there are a few things

## Friday, October 21, 2011

### Quadratic reciprocity in a finite group.

Let $p$ and $q$ be distinct odd primes. Then $$\displaystyle \left({\frac p q}\right) \left({\frac q p}\right) = \left({-1}\right)^{\frac {\left({p-1}\right) \left({q-1}\right)} 4}$$ where $\displaystyle \left({\frac p q}\right)$ and $\displaystyle \left({\frac q p}\right)$ are defined as the Legendre Symbol $\displaystyle \left({\frac{a}{p}}\right) := a^{\frac{(p-1)}{2}} \pmod p$.

Gauss considered his work on the Quadratic Reciprocity Law among his major achievements. I don't 'get that', not now anyway, that's a call for more study on the topic.

Now and then, when I browse through papers, or otherwise, I find an interesting mathematical paper... ( that I can actually read ). Actually, I was browsing through a book called Reciprocity Laws, from Euler to Eisenstein by Franz Lemmermeyer, it contains more than 100 proofs of the Quadratic Reciprocity Law. I hoped to find a proof I could appreciate by it's beauty. Although most proofs are based on Gauss's Lemma ( as the proof in M381 ) but there are proofs in other realms of mathematics like Group Theory. Group Theory -as we know it today- did not exist in Gauss's time. That's why I am going to spend some time studying the following paper 'Quadratic reciprocity in a finite group.'

## Welcome to The Bridge

Mathematics: is it the fabric of MEST?
This is my voyage
My continuous mission
To uncover hidden structures
To create new theorems and proofs
To boldly go where no man has gone before

(Raumpatrouille – Die phantastischen Abenteuer des Raumschiffes Orion, colloquially aka Raumpatrouille Orion was the first German science fiction television series. Its seven episodes were broadcast by ARD beginning September 17, 1966. The series has since acquired cult status in Germany. Broadcast six years before Star Trek first aired in West Germany (in 1972), it became a huge success.)